
uniAuth

Giuseppe De Marco

Nov 15, 2022





AUTHOR’S NOTES:

1 Why I decided to develop this IDP 3

2 General Description 5

3 Implementation specific Features 7

4 Requirements and enviroment 9

5 Example project 11

6 Install uniAuth as a Django app 13

7 Configure the software 15

8 Create Database 17

9 LDAP connection 19

10 Create your own SAML certificates 21

11 Create schemas and superuser 23

12 Run debug server 25

13 Production Environment 27

14 MetadataStore definitions 29

15 Service Providers Federation 31

16 Attribute releases 33

17 Entity Categories 35

18 Name ID Format 37

19 Customize uniAuth 39

20 Localization i18n 41

21 MDQuery 43

22 AACli 45

i



23 Backup 47

24 Restore 49

25 Migrate from Shibboleth IdP 51

26 Indices and tables 53

ii



uniAuth

Github official page is at https://github.com/UniversitaDellaCalabria/uniAuth

AUTHOR’S NOTES: 1

https://github.com/UniversitaDellaCalabria/uniAuth


uniAuth

2 AUTHOR’S NOTES:



CHAPTER

ONE

WHY I DECIDED TO DEVELOP THIS IDP

Many SAML2 IDP OpenSource softwares come as mature, I used them and also appreciate them. As a long date
Python Programmer I was also looking for something more smart for my needs, at the same time it should have been
also very compliant to the standards. For these reasons I choosed to start development on top of Django Framework
and pySAML2.

I also noticied that there come always the need to have high sysadmin skills to work with SAML integrated systems, data
definitions still need to be stored and handled in multiple files and in a way that, I think, there’s too much management
costs in time, with repetitive and boring actions handled via console. In addition to this the learning curve related to
SAML2 implementations proves itself very slow, often many users preferred to get out of all this.

I also found a lot of python projects developed from scratch and I thought that a Django implementation of them
would be a better solution. I decided then to develop an application that would let simple users to do an applicative
administration of the platform, create new metadata store and federate new Service Provider, without handle high
sysadmin tasks.

Why these great softwares still doesn’t have a human management UI and other helpers tools was therefore another of
my important questions.

I made contributions in djangosaml2idp. Soon those contributions became a distinct fork, so uniAuth was born as a
djangosaml2idp fork because that project won’t need some of the features that we found today in uniAuth, of which I
also needed within a reasonable time.

My attempt with uniAuth was that to bring the IDentity management to smart users without give up smartness, in
the innovation of ordinary management processes. Probably you noticed that uniAuth not come as a Django app but
as an entire project, this is because we want to offer a ready-to-use software and not a software too much linked to
programming skills of users.

3

https://github.com/OTA-Insight/djangosaml2idp


uniAuth

Fig. 1: Admin backend preview, a daily IDP administration will give you everything you need without touching the
console.

4 Chapter 1. Why I decided to develop this IDP



CHAPTER

TWO

GENERAL DESCRIPTION

uniAuth, as a SAML2 IDP, is based on pysaml2 and it supports:

• HTTP-REDIRECT and POST bindings (signed authn request must be in HTTP-POST binding);

• ForceAuthn;

• SLO, SAML Single Logout;

• Signed and Encrypted assertions in Response;

• AllowCreate, nameid is stored if nameid format is persistent.

5

https://github.com/IdentityPython/pysaml2


uniAuth

6 Chapter 2. General Description



CHAPTER

THREE

IMPLEMENTATION SPECIFIC FEATURES

• no restart is needed when add a new metadata or Service Provider Definition;

• Full Internazionalization support (i18n);

• Interactive Metadata Store definitions through the Admin Backend UI;

• Interactive ServiceProvider definition through the Admin Backend UI;

• Customizable Template and style based on [AGID guidelines](https://www.agid.gov.it/it/argomenti/
linee-guida-design-pa);

• MetadataStore and SP validations on save, to prevent faulty configurations in production environment;

• Configurable digest algorithm and salt for Computed NameID;

• Many configurable options, for every SP we can decide:
– enable/disable explicitally;

– signature and digest algorithms;

– attributes release (force a set or release what requested by sp);

– attribute rewrite and creation, fully configurable AttributeProcessors per SP, every aspect of attribute
release can be customized from scratch;

– agreement screen message, availability, data consent form.

• Configurable log rotation through uwsgi;

• Importable StoredPersistentID for each user, from migrations from another IDP;

• An optional LDAP web manager with a configurable app (ldap_peoples) through django-ldap-academia-ou-
manager;

• Multiple LDAP sources through pyMultiLDAP;

• Detailed logs.

7

https://www.agid.gov.it/it/argomenti/linee-guida-design-pa
https://www.agid.gov.it/it/argomenti/linee-guida-design-pa
https://github.com/peppelinux/django-ldap-academia-ou-manager
https://github.com/peppelinux/django-ldap-academia-ou-manager
https://github.com/peppelinux/pyMultiLDAP


uniAuth

8 Chapter 3. Implementation specific Features



CHAPTER

FOUR

REQUIREMENTS AND ENVIROMENT

Install madiadb or whatever RDBMS supported by django ORM

sudo apt install xmlsec1 mariadb-server libmariadbclient-dev python3-dev python3-pip␣
→˓libssl-dev libmariadb-dev-compat libsasl2-dev libldap2-dev

pip3 install virtualenv
virtualenv -ppython3 uniauth.env
source uniauth.env/bin/activate

9



uniAuth

10 Chapter 4. Requirements and enviroment



CHAPTER

FIVE

EXAMPLE PROJECT

git clone https://github.com/UniversitaDellaCalabria/uniAuth.git
cd uniAuth
pip3 install -r requirements.txt
pip3 install -r requirements-customizations.txt
cd example/
./manage.py migrate
./manage.py createsuperuser
./manage.py runserver

11



uniAuth

12 Chapter 5. Example project



CHAPTER

SIX

INSTALL UNIAUTH AS A DJANGO APP

pip install uniauth-saml2-idp

13



uniAuth

14 Chapter 6. Install uniAuth as a Django app



CHAPTER

SEVEN

CONFIGURE THE SOFTWARE

You have to copy and edit the following files to have your configuration. The Database and all the Django settings ca
be managed in settingslocal.py. SAML2 IdP and AA configuration must be configured in idp_pysaml2.py

cd django_idp

# copy and modify as your needs
cp settingslocal.py.example settingslocal.py

# copy and modify SAML2 IDP paramenters
cp idp_pysaml2.py.example idp_pysaml2.py

djangosaml2 parameters:

SAML_IDP_CONFIG = {}
the PySAML2 IdP configuration, see example/django_idp/idp_pysaml2.py.example and pysaml2 official docu-
mentation.

SAML_IDP_DJANGO_USERNAME_FIELD = ‘username’
Attribute used for SAML nameid. It must be a field name, a @property or a callable of the Django User model.

SAML_COMPUTEDID_HASHALG = ‘sha256’
Global behaviour, which algorithm should be used to produce the computedID of a user. Used only for OPAQUE,
TRANSIENT and PERSISTENT nameid format.

SAML_COMPUTEDID_SALT = b’87sdf+ybDS+FDSFsdf__7yb’
Salt used to produce the computed id. Use b'' to disable salt. Used only for TRANSIENT and PERSISTENT
nameid format.

SAML_ALLOWCREATE = True
If enabled and nameid format is persistent the nameid related to user:recipient_id will be stored in PersistentId
model

Platform specific parameters, each of these can be overriden in ServiceProvider configurations:

SAML_IDP_SHOW_USER_AGREEMENT_SCREEN = True
Global behaviour, show or not the agreement screen.

SAML_IDP_SHOW_CONSENT_FORM = False
Global behaviour, show or not the form for the consent to transmit the attributes.

SAML_IDP_USER_AGREEMENT_ATTR_EXCLUDE = []
Global behaviour, if for some reason some attribute should be hidden in the agreement screen (discouraged!).

SAML_IDP_USER_AGREEMENT_VALID_FOR = 24 * 365
User agreements will be valid for 1 year unless overriden. If this attribute is not used, user agreements will not
expire.

15



uniAuth

SAML_AUTHN_SIGN_ALG and SAML_AUTHN_DIGEST_ALG
Global behaviour, which algorithms should be used for SAML signature and digest.

SAML_FORCE_ENCRYPTED_ASSERTION = False
It will only release encryoted assertion, default = False. SP without encryption key will not works with this
configuration.

SAML_DISALLOW_UNDEFINED_SP = True
Only configured SP are allowed to do Authentication requests. If False all the SP available in the MetadataStore
can request an authentication.

DEFAULT_SPCONFIG = {
Default configuration that will be preloaded on every ServiceProvider configurations. Put here your favourite
Attribute Processor or choose another one, from one of your custom application. See examples.

To configure new Metadata stores and federate new Service Providers you can use metadata and SP definitions in
idp_pysaml2.py for pysaml2 compatibility, otherwise you can create and manage them via Django Admin backend.
See dedicated sections for examples.

16 Chapter 7. Configure the software



CHAPTER

EIGHT

CREATE DATABASE

You can even use sqlite3 for test purpose. If you want to use mariadb instead, create first the database and the user with
the grants, then carry these parameters in your settingslocal.py file.

# create your MysqlDB
export USER='that-user'
export PASS='that-password'
export HOST='%'
export DB='uniauth'

# tested on Debian 10
sudo mysql -u root -e "\
CREATE USER IF NOT EXISTS '${USER}'@'${HOST}' IDENTIFIED BY '${PASS}';\
CREATE DATABASE IF NOT EXISTS ${DB} CHARACTER SET = 'utf8' COLLATE = 'utf8_general_ci';\
GRANT ALL PRIVILEGES ON ${DB}.* TO '${USER}'@'${HOST}';"

17



uniAuth

18 Chapter 8. Create Database



CHAPTER

NINE

LDAP CONNECTION

You can use LDAP data source using ldap_peoples ldap manager or pyMultiLDAP apps. If you don’t need a LDAP
data source remove ldap_peoples or multildap from settingslocal.INSTALLED_APPS.

ldap_peoples is a fancy app to integrate a R&S LDAP manager. On top of it you’ll find a custom authentication
backend and a custom attribute processor, you can even write your custom auth backend and processor with your
preferred LDAP library. If you need a fully compliant LDAP configuration with ldap_peoples please try the dedicated
playbook for it.

If you need multiple LDAP data sources following ldap_peoples approach you’ll have to create your own django
application and use types and methods found in ldap_peoples.

If you do not want to create other django application or develop other things to manage multiple LDAP sources, you
can use pyMultiLDAP as a proxy, through slapd-sock, or as a python LDAP Client. See settingslocal.py.example to
have some usage examples.

19

https://github.com/peppelinux/ansible-slapd-eduperson2016
https://github.com/peppelinux/ansible-slapd-eduperson2016
https://github.com/peppelinux/pyMultiLDAP


uniAuth

20 Chapter 9. LDAP connection



CHAPTER

TEN

CREATE YOUR OWN SAML CERTIFICATES

Then copy them to certificates folder and define them in idp_pysaml2.py (key_file and cert_file, even in
encryption_keypairs).

openssl req -nodes -new -x509 -newkey rsa:2048 -days 3650 -keyout private.key -out␣
→˓public.cert

21



uniAuth

22 Chapter 10. Create your own SAML certificates



CHAPTER

ELEVEN

CREATE SCHEMAS AND SUPERUSER

./manage.py migrate

./manage.py createsuperuser

23



uniAuth

24 Chapter 11. Create schemas and superuser



CHAPTER

TWELVE

RUN DEBUG SERVER

./manage.py runserver

. . . need a SP for a preliminar tests? see djangosaml2_sp here: https://github.com/peppelinux/Django-Identity

Admin ui could be configured in settingslocal.py, with the variable ADMIN_PATH. If it is not defined, default will be
admin/.

25

https://github.com/peppelinux/Django-Identity


uniAuth

26 Chapter 12. Run debug server



CHAPTER

THIRTEEN

PRODUCTION ENVIRONMENT

See uwsgi_setup examples.

Remember to run collectstatic to copy all the static files in the production static folder:

./manage.py collectstatic

If you need more debug control with the same production configuration, using uwsgi you could run the following
commands (absolute paths as examples):

/etc/init.d/unicalauth stop
uwsgi --ini /opt/unicalauth/uwsgi_setup/uwsgi.ini.debug

27



uniAuth

28 Chapter 13. Production Environment



CHAPTER

FOURTEEN

METADATASTORE DEFINITIONS

29



uniAuth

30 Chapter 14. MetadataStore definitions



CHAPTER

FIFTEEN

SERVICE PROVIDERS FEDERATION

31



uniAuth

32 Chapter 15. Service Providers Federation



CHAPTER

SIXTEEN

ATTRIBUTE RELEASES

By default IdP will only release required Attributes defined in each SP metadata (isRequired=True or EntityCategories),
if they are available. Otherwise the IdP will release a default attribute set, defined in settings parameters. It can also
force some attribute release by checking force_attribute_release into each SP configuration.

Every SP can use a specific Attribute Processor, you can even customize a brand new one in an application that can
be easily installed into django_idp.settingslocal.INSTALLED_APPS. You can see how these processors works
simply looking at uniauth_saml2_idp.base.processors and uniauth_saml2_idp.ldap.processors.

The Attribute Processor can fetch data from third-party sources and manipulate attributes as well.

There also a special class named NameIdBuilder, the nameID policy relies on it, it should be very easy to inherit and
customize as needed.

In every processors there’s a special method called extra_attr_processing where to put additional conditions
and values processing. See idp.processors.LdapUnicalAcademiaProcessor for an example of inheritance with
the use of this method.

33



uniAuth

34 Chapter 16. Attribute releases



CHAPTER

SEVENTEEN

ENTITY CATEGORIES

Entity Categories is handled as it come from pySAML2. In the django_idp.idp_pysaml2 we can define
entity_category_support or entity_category as follow

SAML_IDP_CONFIG = {
'debug' : True,
'xmlsec_binary': get_xmlsec_binary(['/opt/local/bin', '/usr/bin/xmlsec1']),
'entityid': '%s/metadata' % BASE_URL,
'attribute_map_dir': 'data/attribute-maps',
'description': 'SAML2 IDP',

'entity_category': [edugain.COCO, # "http://www.geant.net/uri/dataprotection-code-of-
→˓conduct/v1"

refeds.RESEARCH_AND_SCHOLARSHIP],

'service': {

The previous configuration will expose Entity Categories in the IDP metadata. If we need also to
handle these as policy, to manage these as restrictions on attribute release, we could define them in
SAML_IDP_CONFIG['service']['idp']['policy']

"policy": {
"default": {

"lifetime": {"minutes": 15},
"name_form": NAME_FORMAT_URI,
# if the sp are not conform to entity_categories (in our metadata)
# the attributes will not be released
# "entity_categories": ["refeds",],

},

# attributes will be released only if this SP have
# edugain entity_category definition in its metadata.
"https://sp1.testunical.it/saml2/metadata/": {

"entity_categories": ["edugain"]
}

}

35



uniAuth

36 Chapter 17. Entity Categories



CHAPTER

EIGHTEEN

NAME ID FORMAT

This uniAuth release only supports these Name ID formats:

• NAMEID_FORMAT_UNSPECIFIED

• NAMEID_FORMAT_TRANSIENT

• NAMEID_FORMAT_PERSISTENT

• NAMEID_FORMAT_EMAILADDRESS

See uniauth_saml2_idp.base.processors.NameIdBuilder if you need to implement other formats, it’s trivial.

37



uniAuth

38 Chapter 18. Name ID Format



CHAPTER

NINETEEN

CUSTOMIZE UNIAUTH

In the projects tree there’s an example project called example. It come with an application callend uni-
auth_unical_template in django_idp.settingslocal.INSTALLED_APPS where we have all the html template and
static files. Start from this example template for doing your customizations.

39



uniAuth

Fig. 1: This is the structure of idp
40 Chapter 19. Customize uniAuth



CHAPTER

TWENTY

LOCALIZATION I18N

It relies to Django documentation.

You’ll find gettext .po files into locale/ folder, then you can translate messages before compiling them with:

./manage.py compilemessage

41

https://docs.djangoproject.com/en/2.2/ref/django-admin/#django-admin-makemessages


uniAuth

42 Chapter 20. Localization i18n



CHAPTER

TWENTYONE

MDQUERY

This command permit us to check the availability of a saml entity in the IdP metadata store. The option -f can specify
the output format, if saml2 (default) or json. It will print the entity metadata in the console.

./manage.py mdquery -e "http://sp1.testunical.it:8000/saml2/metadata/"

./manage.py mdquery -e "http://sp1.testunical.it:8000/saml2/metadata/" -f json

43



uniAuth

44 Chapter 21. MDQuery



CHAPTER

TWENTYTWO

AACLI

This feature will let us check wich attributes will be released to a specified Service Provider regarding a specified user.

./manage.py aacli -u mario -e https://sptest.auth.unical.it/saml2

example output:

SP Configuration:
{
"processor": "uniauth_saml2_idp.processors.ldap.LdapUnicalMultiAcademiaProcessor",
"attribute_mapping": {
"cn": "cn",
"codice_fiscale": "codice_fiscale",
"displayName": "displayName",
"eduPersonAffiliation": "eduPersonAffiliation",
"eduPersonEntitlement": "eduPersonEntitlement",
"eduPersonHomeOrganization": "eduPersonHomeOrganization",
"eduPersonPrincipalName": "eduPersonPrincipalName",
"eduPersonScopedAffiliation": "eduPersonScopedAffiliation",
"eduPersonTargetedID": "eduPersonTargetedID",
"email": [
"mail",
"email"

],
"givenName": [
"givenName",
"another_possible_occourrence"

],
"mail": [
"mail",
"email"

],
"matricola_dipendente": "matricola_dipendente",
"matricola_studente": "matricola_studente",
"schacHomeOrganization": "schacHomeOrganization",
"schacPersonalUniqueCode": "schacPersonalUniqueCode",
"schacPersonalUniqueID": "schacPersonalUniqueID",
"sn": "sn"

},
"force_attribute_release": false,
"display_name": "http://sp1.testunical.it:8000/saml2/metadata/",
"display_description": "",

(continues on next page)

45



uniAuth

(continued from previous page)

"display_agreement_message": "",
"signing_algorithm": "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256",
"digest_algorithm": "http://www.w3.org/2001/04/xmlenc#sha256",
"disable_encrypted_assertions": true,
"show_user_agreement_screen": true,
"display_agreement_consent_form": false

}

TargetedID: 4b7dc8cc66796e63702f7baa73588f772191254801ab9369b7dfa883dbccad58
{
"cn": [
"mario rossi"

],
"eduPersonEntitlement": [
"urn:mace:terena.org:tcs:personal-user",
"urn:mace:terena.org:tcs:escience-user",
"urn:mace:dir:entitlement:common-lib-terms"

],
"eduPersonPrincipalName": [
"mario@testunical.it"

],
"eduPersonScopedAffiliation": [
"staff@testunical.it",
"member@testunical.it",
"member@altrodominio.it"

],
"email": [
"mario.rossi@testunical.it"

],
"givenName": [
"mario"

],
"mail": [
"mario.rossi@testunical.it"

],
"schacHomeOrganization": [
"testunical.it"

],
"schacPersonalUniqueCode": [
"urn:schac:personalUniqueCode:it:testunical.it:dipendente:1237403",
"urn:schac:personalUniqueCode:it:testunical.it:studente:1234er"

],
"schacPersonalUniqueID": [
"urn:schac:personalUniqueID:it:CF:CODICEFISCALEmario"

],
"sn": [
"rossi"

],
"codice_fiscale": "CODICEFISCALEmario"

}

46 Chapter 22. AACli



CHAPTER

TWENTYTHREE

BACKUP

We can export all the MetadataStores, the federated ServiceProviders and user’s Agreements in JSON format as follow:

./manage.py dumpdata uniauth_saml2_idp
# to a file
./manage.py dumpdata uniauth_saml2_idp > /path/to/file.json

If we had some users with legacy SAML persistent ID stored in our USER_MODEL we can also backup these with the
following command:

./manage.py dumpdata accounts

47



uniAuth

48 Chapter 23. Backup



CHAPTER

TWENTYFOUR

RESTORE

To restore these backups just run this:

./manage.py loaddata /path/to/file.json

49



uniAuth

50 Chapter 24. Restore



CHAPTER

TWENTYFIVE

MIGRATE FROM SHIBBOLETH IDP

Here a brief description of the general steps to do for migrating an existing Shibboleth IdP to uniAuth, carrying the
same configuration. We have migrate from Shibboleth IdP 3.4.6 to uniAuth v2.0.0, here the steps we made to achieve
this goal:

1. copy SAML2 certificates, from shibboleth idp SAML in credentials/ to your pysaml2 configuration.

2. Standing on Shibboleth metadata, in metadata/idp-metadata.xml, place the same Service Endpoints urls to your
project’s urls file:

if 'uniauth_saml2_idp' in settings.INSTALLED_APPS:
import uniauth_saml2_idp.urls
from uniauth_saml2_idp.views import SsoEntryView, LogoutProcessView

urlpatterns += path('idp/profile/SAML2/<str:binding>/SSO', SsoEntryView.as_
→˓view(),

name="saml_login_binding"),
urlpatterns += path('idp/profile/SAML2/<str:binding>/SLO', LogoutProcessView.as_

→˓view(),
name="saml_logout_binding"),

urlpatterns += path('idp/shibboleth/', metadata, name='saml2_idp_metadata'),

urlpatterns += path(
'idp/', include((uniauth_saml2_idp.urls, 'uniauth_saml2_idp',))

),

3. Configure the same entityID in your pysaml2 configuration.

4. Migrate the existing Shibboleth IdP conf/attribute-filters.xml (and any other available in conf/services.xml) to
uniauth SP definitions (ModelAdmin or settings.py).

5. If you use LDAP: Configure PyMultiLDAP rewrite rules and pattern matching, standing on the Attributes defined
in conf/attribute-resolver.xml (and any other available in `conf/services.xml).

6. Configure your metadata store (ModelAdmin or settings.py). It’s suggested to use a MDQ Server for loading
large federation xml files, as to be with eduGain.

7. Use uniauth aacli and mdquery commands to check the availability of Entities and the attribute to be released to
them.

51



uniAuth

52 Chapter 25. Migrate from Shibboleth IdP



CHAPTER

TWENTYSIX

INDICES AND TABLES

• genindex

• modindex

• search

53


	Why I decided to develop this IDP
	General Description
	Implementation specific Features
	Requirements and enviroment
	Example project
	Install uniAuth as a Django app
	Configure the software
	Create Database
	LDAP connection
	Create your own SAML certificates
	Create schemas and superuser
	Run debug server
	Production Environment
	MetadataStore definitions
	Service Providers Federation
	Attribute releases
	Entity Categories
	Name ID Format
	Customize uniAuth
	Localization i18n
	MDQuery
	AACli
	Backup
	Restore
	Migrate from Shibboleth IdP
	Indices and tables

